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Overdamped motion of Brownian particles in an asymmetric double-well potential driven by an additive
nonequilibrium three-level noise and a thermal noise is considered. In the stationary regime, an exact formula
for the mean occupancy of the metastable state is derived, and the phenomenon of enhancement of stability
versus temperature is investigated. It is established that in a certain region of the system parameters the mean
occupancy can be either multiply enhanced or suppressed by variations of temperature. We show that this effect
is due to the involvement of different time scales in the problem. The necessary conditions for several different
behaviors of the mean occupancy as a function of temperature are also discussed. The effect is more pro-
nounced when the kurtosis of the three-level noise tends to −2, i.e., in the case of dichotomous noise.
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I. INTRODUCTION

Within the past two decades the behavior of nonequilib-
rium systems depending on fluctuations �noise� has received
considerable attention. Stochastic resonance �1�, noise-
induced phase transitions in spatially extended systems �2�,
stochastic transport in ratchets �3�, hypersensitive transport
�4,5�, resonant activation �6�, noise-induced multistability,
and discontinuous transitions �7,8� are a few phenomena in
this field.

One of the objects of special attention has been noise-
driven escape processes in a bistable potential. The problem
of noise-driven barrier crossing dynamics of a Brownian par-
ticle in a double-well potential coupled to a heat bath, repre-
sented by an additive white noise, was earlier formulated and
solved by Kramers �9�. Since then the Kramers model and
many of its variants have been addressed by a large number
of studies at various levels of description. The archetypal
examples exhibiting bistable �double-well� potentials are
nonequilibrium chemical reactions �e.g., the second Schlögl
model �10,11��, nonequilibrium Ginzburg-Landau-type
bistable stochastic dynamics �10�, and optical bistability in
laser devices �12,13�.

Recent years have witnessed an increasing interest in the
dependence of the mean exit time of metastable and unstable
systems with fluctuating potentials on noise intensity �14,15�.
Related investigations involving noise-induced stability �16�
or noise-enhanced stability �17,18� belong to a highly topical
interdisciplinary realm of studies, ranging from condensed
matter physics to molecular biology, or to cancer growth
dynamics �14,19–21�. One should take care not to confuse
noise-induced stability �NIS� with noise-enhanced stability
�NES�: NIS implies complete stabilization in a metastable
state, while NES is only a postponement of the system insta-
bility �14�. The effect called NES in �15,17,20� is observed in
a periodically �or stochastically� driven system with a single
metastable minimum. The system remains in the metastable

minimum for some time given by the mean first passage time
�MFPT� for the barrier, and the MFPT has a maximum at a
certain noise intensity. In the case of NIS the potential fluc-
tuates stochastically with a certain correlation time and has
two minima. The less stable minimum is the absolute mini-
mum for a certain configuration of the potential, but most of
the time this minimum is metastable. Nevertheless, it can be
highly occupied �16�.

Motivated by investigations into the effect of a periodic
electric field on cell membrane proteins �22,23�, the author
of �16� has considered overdamped motion of a Brownian
particle in an asymmetric bistable potential fluctuating ac-
cording to a dichotomous noise. This biologically motivated
model clearly demonstrates the effect of NIS, as for interme-
diate fluctuation rates the mean occupancy of minima with
an energy above the absolute minimum is enhanced. Earlier
studies of noise-induced stability as well as related effects,
such as NES and resonant activation, have mainly been in-
terested in the dependence of the effects on the potential
fluctuation flipping rate. However, the essential role of ther-
mal fluctuations has been recognized by the consideration of
NES �17,20�. In spite of the obvious significance of this cir-
cumstance, the role of thermal fluctuation intensity has not
been much investigated in the context of NIS.

In the present paper we consider a model similar to the
one presented in �16�, except for some details of the potential
profile and for the dichotomous noise being replaced with a
trichotomous noise. As the results of �16� show that the phe-
nomenon of NIS is quite universal and manifests itself for
arbitrary bistable potential landscapes, we decided to study
overdamped motion of Brownian particles in an asymmetric,
bistable, piecewise linear potential subjected to both a tri-
chotomous noise and a thermal one. The piecewise linear
potential is important for at least two reasons. First, it can be
used as a first approximation of the shape of an arbitrary
potential and second, it is sufficiently simple to allow an
analytic treatment of the relevant quantities, being at the
same time physically rich enough to provide most of the
effects characteristic of two-well potentials. In order to get
the results in exact forms for all values of the noise param-
eters, the nonequilibrium fluctuations of a potential land-
scape are modeled as a trichotomous noise. As to the tri-
chotomous Markov process �24�, it is most important for our
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purposes that systems driven by trichotomous noises can, in
stationary regimes, often be described in full analytic detail.
Also, trichotomous noise can, in appropriate limits, be re-
duced to either white shot noise or Gaussian white noise, and
either it can mimic the effects of finite correlation time of
real noise or it may directly provide a good representation of
an actual physical situation, e.g., thermal transitions between
three configurations or states. Finally, it has the advantage
that it can easily be implemented as an external noise with
finite support. Although both dichotomous and trichotomous
noises may be useful in modeling natural colored fluctua-
tions, the latter is more flexible, including all cases of di-
chotomous noise �24�. Furthermore, it is remarkable that for
trichotomous noises the kurtosis � can be anything from −2
to �, unlike the kurtosis for Gaussian colored noise, �=0,
and symmetric dichotomous noise, �=−2. This extra degree
of freedom can prove useful in modeling actual fluctuations.

Our purpose is to report some interesting phenomena for
Brownian particles, which occur in a simple asymmetric
bistable potential by variation of temperature, arising as a
consequence of interplay between nonequilibrium noise,
thermal noise, and asymmetry of the potential. We restrict
ourselves to discussion of the stationary regime of the system
investigated, i.e., relaxation processes from initial states to
the stationary regime are not considered. For brevity’s sake,
from now on we shall call the less stable minimum of the
average potential �this minimum is metastable most of the
time� the metastable state and the absolute minimum of the
average potential the stable state of the potential.

The main contribution of this paper is as follows. We
provide an exact formula for the analytic treatment of the
dependence of the occupancy probability of a metastable
state on various system parameters: viz., temperature, poten-
tial asymmetry, correlation time, kurtosis, and noise ampli-
tude. We establish a thermal-fluctuation-induced phenom-
enon: namely, for certain values of the system parameters
there exist several ranges of temperature values where the
occupancy of the metastable state can be either enhanced or
suppressed by variations of temperature. The general highly
nonlinear dependence of the occupancy W0 of a metastable
state on the temperature D is characterized by two tempera-
ture regions, related to noise-induced stability: for lower
temperatures the occupancy of the metastable state is greater
than that of the stable state, whereas for higher temperatures
the situation is the reverse. In the region of the crossover we
have demonstrated the possibility of having, at moderate val-
ues of noise correlation times, multiple local extrema and a
resonancelike peak in W0�D�. As the noise correlation time
�c grows, the local extrema in this region disappear, and turn
into two wide plateaus at a larger �c. We also show that such
a behavior of the system is quite robust, and the mentioned
phenomenon occurs within a broad range of trichotomous
noise parameters �kurtosis, correlation time�. Thus, the re-
sults indicate the possibility that the stability of the meta-
stable states could be controlled by varying the temperature.

The structure of the paper is as follows. Section II pre-
sents the basic model investigated. A master equation de-
scription of the model is given and the formula for the occu-
pancy probability of the metastable state is found. Section III
analyzes the behavior of the occupancy probability. The phe-

nomenon of multiple enhanced stability of the metastable
state versus temperature is established. Section IV contains
some brief concluding remarks. Some formulas are delegated
to the Appendix.

II. THE MODEL AND THE EXACT SOLUTION

As an archetypical model for systems with a metastable
state that are strongly coupled with a noisy environment, we
consider one-dimensional overdamped Brownian motion in a
fluctuating sawtoothlike asymmetric bistable potential,

U�X,Z� = U�X� + XZ�t� , �1�

where X�t� is the displacement of a Brownian particle at the
time t and the variable Z�t� is a Markovian trichotomous
noise �24�, which consists of jumps between three values
z1=a, z2=0, z3=−a, a�0. The jumps follow, in time, the
pattern of a Poisson process, the values occurring with the
stationary probabilities ps�a�= ps�−a�=q and ps�0�=1−2q,
where 0�q�1 /2. The transition probabilities Tijªp��zi , t
+��zj , t� between the states zn, n=1,2 ,3, can be represented
by means of the transition matrix �Tij� of the trichotomous
process as follows:

�Tij� = ��i,j� + �1 − e−���� q − 1 q q

1 − 2q − 2q 1 − 2q

q q q − 1
� ,

where ��0, and �i,j is the Kronecker symbol. In a stationary
state the fluctuation process satisfies �Z�t�	=0 and �Z�t
+��Z�t�	=2qa2 exp�−���, where the switching rate � is the
reciprocal of the noise correlation time, �c=1 /�, i.e., Z�t� is a
symmetric zero-mean exponentially correlated noise. The tri-
chotomous process is a particular case of the kangaroo pro-
cess �25� with the kurtosis �= �Z4�t�	 / �Z2�t�	2−3=1 /2q−3.

We describe the overdamped motion of Brownian par-
ticles in dimensionless units, using the Langevin equation

dX

dt
= h�X� − Z�t� + 	�t�, h�x� = −

dU�x�
dx

, �2�

where the thermal noise 	�t� satisfies �	�t�	=0 and
�	�t1�	�t2�	=2D��t1− t2�. D is the thermal noise intensity,
which for the sake of brevity will be called temperature. The
piecewise linear asymmetric bistable potential considered
has the profile

U�x� =

1

d
x , x � �0,d� ,

1 +
1 + 


1 − d
�d − x� , x � �d,1� ,

U�0� = U�1� = � .
� �3�

A schematic representation of the three configurations as-
sumed by the “net potentials” Vn�x�=U�x�+znx, n=1,2 ,3,
associated with the right-hand side of Eq. �2�, is shown in
Fig. 1. In this work, we restrict ourselves to the system pa-
rameter region where the net potentials Vn�x� for all states
n=1,2 ,3 of the nonequilibrium noise Z have two minima.
More precisely, we assume that
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a �
1 + 


1 − d
, a �

1

d
, 0 � d �

1

2
,

0 � 
 � a�1 − 2d� . �4�

The master equation corresponding to Eq. �2� reads

�

�t
Pn�x,t� = −

�

�x
��h�x� − zn�Pn�x,t� − D

�

�x
Pn�x,t�

+ �
m=1

3

SnmPm�x,t� , �5�

where Pn�x , t� is the joint probability density for the position
variable x�t� and the fluctuation variable z�t�, and the transi-
tion matrix �Snm� is given by

�Snm� = �� q − 1 q q

1 − 2q − 2q 1 − 2q

q q q − 1
� .

The stationary probability density in the x space, Ps�x�, is
then evaluated via the stationary probability densities Pn

s�x�
for the states �x ,zn�:

Ps�x� = �
n=1

3

Pn
s�x� . �6�

As the “force” h�x�=−dU�x� /dx is piecewise constant, h�x�
=h0=−1 /d for x� �0,d� and h�x�=h1= �1+
� / �1−d� for x
� �d ,1�, Eq. �5� splits up into two linear differential equa-
tions with constant coefficients for the two vector functions
Pi

s�x�= �P1i
s , P2i

s , P3i
s �, i=0,1, defined on the intervals �0,d�

and �d ,1�, respectively. The solution reads

Pni
s �x� = p�zn��

j=1

5

YijAnije
−�ijx/D, �7�

where

p�zn� = �1 − 2q��n,2 + q��n,1 + �n,3� ,

Anij =
�D

�D − �ij�hi − zn + �ij�
.

Yij are constants of integration, and ��ij , j=1, . . . ,5� is the
set of roots of the algebraic equation

�i
5 + 3�i

4hi + �i
3�3hi

2 − a2 − 2�D� + �i
2hi�hi

2 − a2 − 4�D�

+ �i�D��D + 2�qa2 − hi
2�� + hi�

2D2 = 0. �8�

Nine independent conditions for the ten constants of integra-
tion Yij can be determined at the points of discontinuity, by
requiring continuity for the quantities Pni

s �x� and for the sta-
tionary current densities jni�x�ª �hi−zn�Pni

s �x�−D d
dx Pni

s �x� at
the point x=d and the vanishing of the current densities jni�x�
at the boundary points x=0,1, i.e.,

Pn0
s �d� = Pn1

s �d�, jn0�d� = jn1�d� ,

jn0�0� = jn1�1� = 0, n = 1,2,3. �9�

It follows from Eq. �5� that the system of linear algebraic
equations �9� contains only nine linearly independent equa-
tions for Yij. By including the normalization condition

�
n=1

3 �
0

1

Pn
s�x�dx = 1, �10�

a complete set of conditions is obtained for ten constants of
integration Yij. Now the constants Yij can be expressed as
quotients of two determinants of the tenth degree:

Yij =
det�Bl,r�1 − �r,j+5i� + �l,10�r,j+5i�

det�Bl,r�
, �11�

where the matrix �Bl,r�, l ,r=1, . . . ,10, is defined as follows:

B6,j+5 = B7,j+5 = B8,j = B9,j = 0,

Bn,j+5i = �− 1�iAnij exp�−
d�ij

D
 ,

Bm+3,j+5i = �hi − z2m−1 + �ij�B2m−1,j+5i,

Bm+5+2i, j+5i = ��0,i exp�d�ij

D


+ �1,i exp� �d − 1��ij

D
�Bm+3, j+5i,

B10,j+5i =
�− 1�iD

�ij
�exp�−

�ij�1,i

D
 − exp�−

d�ij

D
� ,

�12�

with n=1,2 ,3, m=1,2, j=1, . . . ,5, and i=0,1.
The stationary probability density in the x space, Pi

s�x�,
with i=0 for x� �0,d� and i=1 for x� �d ,1�, and the station-
ary occupancy probabilities W0 and W1=1−W0 of the left
and right potential wells, respectively, are given by

Pi
s�x� = �

j=1

5

Yij exp�−
�ijx

D
 , �13�

0.2 0.4 0.6 0.8 1
x

�3

�2

�1

0

1

2
V

n
�x
�

z1�a

z2�0

z3��a

FIG. 1. Representation of different states of the net potentials
Vn�x�=U�x�+znx with z1=a, z2=0, z3=−a. The potential U�x� is
given by Eq. �3� at the parameter values d=0.24, a=2, and 
=1. All
quantities are dimensionless.
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W0�x� = �
0

d

P0
s�x�dx = �

j=1

5

B10,jY0j . �14�

We note that there is a profound difference between the situ-
ation in which white noise, however weak, is present, and the
situation in which there is no white noise, i.e., the limit D
→0 is discontinuous. In the case of D=0 the particles are
locked in the minimum of an initial potential well and a
barrier passage is not possible. For D�0, D being arbitrarily
small, the crossing of the potential barrier triggered by rare
thermal fluctuations is possible and the system relaxes to the
stationary regime, which is independent of initial conditions.

The behavior of W0 in different system parameter regimes
will be considered in Sec. III. All numerical calculations are
performed by using the software MATHEMATICA 5.0.

III. ENHANCEMENT OF THE STABILITY
OF THE METASTABLE STATE

Of central interest to us are the stationary occupancy
probability W0 of the left potential well �see Eq. �14�� and its
responses to the switching rate � and to the temperature D
�0. Figure 2 exhibits the ratio W0 /W1 as a function of the
switching rate � at different values of the temperature. It can
be seen that the functional dependence of W0 /W1 on the
correlation time �c=1 /� is of a bell-shaped form. Notably, at
low temperatures for intermediate values of � the mean oc-
cupancy of the metastable state �the left potential well� is
much larger than the mean occupancy of the stable state, i.e.,
such fluctuations enhance the occupancy of the left mini-
mum, although most of the time it is not the absolute mini-
mum of the potential. Thus, we observe a noise-correlation-
time-induced stability for the metastable state.

The tendency apparent in Fig. 2, namely, an increase of
the occupancy probability W0 as the temperature D de-
creases, also takes place in the case of lower values of D.
Moreover, the decrease of the kurtosis �=1 /2q−3 of the

trichotomous noise Z also enhances the stability of the meta-
stable state �cf. curves 1 and 2 in Fig. 2�.

In the case of dichotomous noise, the phenomenon of
noise-induced stability in models similar to Eq. �2� has al-
ready been examined in �16�, where analogous results to Fig.
2 are presented and a comprehensive physical interpretation
of the effect is given. So our result exposed in Fig. 2 shows
that the phenomenon of the noise-correlation-time-induced
stability is robust enough to survive a modification of the
noise as well as of the potential profile.

It is of interest to examine the behavior of the exact ex-
pression of W0 �Eq. �14�� versus temperature. In Fig. 3 we
have plotted the occupancy probabilities W0 and W1 as func-
tions of the dimensionless temperature D for several values
of the correlation time �c. At intermediate values of �c �see
Fig. 3�a�� for increasing D, the probability W0 starts from the
value W0�1 and decreases to a minimum. Next it grows to
the local maximum and decreases to the other minimum.

0.1 1 10 100 1000
Τc

1

10

100

1000

W
0
�W

1

�1�
�2�

�3�
�4�

FIG. 2. Ratio W0 /W1 vs the noise correlation time �c at various
temperatures D. The occupancy probabilities W0 and W1 of the left
and right potential wells, respectively, are computed by means of
Eq. �14�. Parameter values: a=2, 
=1, and d=0.125. The different
curves correspond to the different values of the parameter q and
temperature D: �1� q=0.49, D=0.04; �2� q=0.35, D=0.04; �3� q
=0.49, D=0.07; �4� q=0.35, D=0.07.
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FIG. 3. Occupancy probabilities W0 �solid line� and W1 �dotted
line� of the left and right potential wells, respectively, versus the
temperature D �Eq. �14��. The parameter values are a=2, 
=1, d
=0.24, and q=0.45. At high values of temperature, D�10, the
probabilities W0 and W1 saturate to the values d and 1−d, respec-
tively. �= �a� 1; �b� 10−3; �c� 10−9.
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Finally, at high temperatures, it grows to the value d.
The interesting peculiarity of Fig. 3 is that there are three

temperature regimes where an enhancement of the occu-
pancy of the metastable state can be recognized. At high
temperatures the effect is trivial. In this case the Brownian
particles “fail to see” the structure of the potential profile and
move as in a simple rectangular potential well. For low val-
ues of the temperature the effect of enhancement is very
pronounced, i.e., nearly all particles are concentrated in the
left potential well which has higher energy most of the time.
This result is in accordance with the phenomenon of noise-
correlation-time-induced stability �see Fig. 2 and �16��. In
the case of moderate values of the temperature a resonance-
like behavior is observed—enhancement of stability also oc-
curs in a finite interval of the temperature, where the lowest
depth of the potential wells is comparable with the thermal
energy of the particle.

However, for larger correlation times, the first minimum
and the local maximum disappear, and two plateaus occur at
moderate temperatures �see Fig. 3�c��. Notably, in the re-
gions of plateaus, where W0 is nearly constant over a finite
range of temperature values, the occupancy probability of the
left potential well is relatively high �W0� 1

2 for the first pla-
teau�.

To throw some light on the physics of the above-
mentioned effects, we shall now study some physical ap-
proximations for a simpler description of the dynamics of the
system �2� on various time scales.

There are several important time scales in our system: six
mean first passage times Tn

�i�= �Kn
�i��−1 for the two minima of

Vn�x�, i=0 and i=1 corresponding to the left and right
minima, respectively; the intrawell relaxation times for
Vn�x�; and the correlation time �c=1 /� for the fluctuations of
the potential. Below we will consider values of temperature
that are sufficiently low, D�min��Vn

�i��, to allow the follow-
ing rate separations:

�i� min��Vn
�i� /Li

2����max�Kn
�i��;

�ii� K1
�0��K2

�0����K3
�0� , K3

�1��K2
�1����K1

�1�;
�iii� K1

�0����K2
�0��K3

�0� , K3
�1��K2

�1����K1
�1�;

�iv� ��K1
�0�. The rates Kn

�i� can be approximated to the
Kramers rates �26�,

Kn
�i� =

��Vn
�i��2

D�Li�2 e−�Vn
�i�/D, �15�

where L0=d , L1=1−d, and �Vn
�i� are the depths of the net

potential wells Vn
�i�. Note that, for a fixed �, all four cases can

be subsequently approached by varying the thermal noise
intensity D only. If �c is long enough compared to the in-
trawell deterministic relaxation times of the net potential
Vn�x�, i.e., �cmax�Li

2 /�Vn
�i��, the condition D�min��Vn

�i��
also guarantees a sharp occupancy distribution in the minima
of net potentials. In this situation the probability flux from
the left �right� potential well to the right �left� one is given by
W0 /T0�−W1 /T1�, where T0 and T1 are the mean first passage
times from the left and right potential wells, respectively. In
the stationary case, the total probability flux between the left
and right potential wells must vanish, implying

W0

W1
=

T0

T1
. �16�

A comparison of the above results with calculations for the
mean first passage time shows that the highly nonlinear be-
havior of W0 and W1 at low and moderate temperatures is
related to resonant activation �6,26–29�. First, we consider
the regime �i�, ��max�Kn

�i��, which corresponds to tempera-
tures that are lower than the temperature Dm corresponding
to the local maximum of W0. The MFPT Ti depends on the
initial occupancy probabilities �n

�i� of the net potential wells
Vn

�i�. More precisely, �n
�i� denotes the conditional probability

that, if the particle is in the potential well �i�, then it is in the
potential configuration Vn. In the case of ��max�Kn

�i��, bar-
rier fluctuations are much faster than barrier passage; there
is, between two crossings over the barrier, enough time for
intrawell relaxation of the particle probability distribution
and the particle spends most of the time in the stationary
probability distribution corresponding to the stationary fluc-
tuations of the potential profile.

Considering that the stationary probabilities for the occur-
rence of the potential configurations V1, V2, and V3 are q,
1−2q, and q, respectively, we obtain

�1
�i� = q �2

�i� = 1 − 2q, �3
�i� = q . �17�

With the initial conditions �17�, the exact formulas for T0 and
T1, being complex and cumbersome, will be presented in the
Appendix �Eqs. �A2� and �A3��.

In Fig. 4 the ratios W0 /W1 and T0 /T1 are compared for
dichotomous noise, q= 1

2 . When comparing the whole curves
of T0�D� /T1�D� and W0�D� /W1�D�, one can distinguish two
regions. For D�Dm=0.1 the curve T0�D� /T1�D� follows
W0�D� /W1�D� quite well �30�. Thus, in this region formula
�16� with Eqs. �17� applies, and the occupation process of the
potential wells can be characterized by the mean first passage
times over the potential barrier. For higher values of D, how-

0.1 1 10D
0

0.5

1

1.5

2

R 1
,R

2,
R 3

0.1 1 10
0
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0.1

FIG. 4. Ratios R1�W0 /W1, R2�T0 /T1, R3� T̃0 / T̃1 versus the
dimensionless temperature D in the case of dichotomous noise, q
=1 /2. Solid line: the function R1�D� computed from Eq. �14�.
Dashed line: the function R2�D� computed from Eqs. �A2� and
�A3�. Dotted line: the function R3�D� computed by means of the
kinetic approximation Eq. �18�. Parameter values: a=2, 
=1, d
=0.24, �=10−3. The inset depicts the region of significant differ-
ence between R2 and R3.
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ever, a significant discrepancy occurs. This reflects the fact
that for D�Dm the time scale considered, ��max�Kn

�i��, is
no longer applicable �Eq. �17� is no longer valid�. Further-
more, the dotted line in Fig. 4 shows clearly that for D
�Dm the kinetic approximation is valid �27�,

Ti � T̃i =
2� + K1

�i� + K3
�i�

2K1
�i�K3

�i� + ��K1
�i� + K3

�i��
, i = 0,1, �18�

and captures, with Eq. �15�, the qualitative behavior of
W0�D� /W1�D� accurately. Moreover, for a fixed � and suffi-
ciently low temperatures it follows from Eq. �15� that the
inequalities �K3

�0�K2
�0�K1

�0� and �K1
�1�K2

�1�K3
�1�

are very strong, and from Eq. �18� we can deduce a simpler
expression, T0�2 /K3

�0� , T1�2 /K1
�1�, i.e., the escape process

is determined by passage over the lowest of the three poten-
tial barriers. It should be noted that in the case of trichoto-
mous noise, q�

1
2 , an analogous expression is also valid:

T0 �
1

qK3
�0� , T1 �

1

qK1
�1� . �19�

With Eq. �19� we then obtain from Eq. �16� the small-D
approximation

W0

W1
� � d�V1

�1�

�1 − d��V3
�0�2

e��V3
�0�−�V1

�1��/D. �20�

As �V3
�0���V1

�1�, this result implies W0W1 for sufficiently
small temperatures �D�Dmin, where Dmin corresponds to the
first local minimum of W0�D��. For increasing values of D
the occupancy probability of the left potential well W0 de-
creases, attaining W0=W1= 1

2 at D=Dcr. It is remarkable that
the approximate Eq. �20� is acceptable also for the estimation
of the “critical” temperature Dcr within a very broad range of
noise correlation times �c, i.e., in this range of �c the tem-
perature Dcr depends only on the potential profile but not on
the noise correlation time. Actually this interval of the
switching rate values coincides with the condition for the
regime �i�:

max�Kn
�i�� � � � min��Vn

�i�

Li
2  .

A comparison of these inequalities with Eqs. �15� and �20� in
the case of the potential parameters displayed in Fig. 3 shows
that Eq. �20� is acceptable for the estimation of Dcr, if 1
���10−12. This result is in accordance with Fig. 3. For
example, in Fig. 3 the actual value of Dcr is 0.018, exceeding
only slightly the value Dcr�0.016 that can be found from
Eq. �20�. We emphasize that if the time scale considered, i.e.,
the regime �i�, is not applicable at D=Dcr, the dependence of
Dcr on � is remarkable �cf. Fig. 5�. The fact that the small-D
approximation �20� is applicable in a broad range of switch-
ing rate values demonstrates that the noise-induced stability
in the low-D region is related to resonant activation
�16,26,27�. In particular, a general feature of the resonant
activation phenomenon for linear ramp, which is similar to
our situation, is that with increasing barrier height �or de-
creasing temperature� a long flat region develops around the

resonant switching rate �res ��res corresponds to the minimum
of the MFPT versus �� �26,27�.

Regime (ii): K1
�0��K2

�0����K3
�0� , K3

�1��K2
�1����K1

�1�.
In this case, when the above inequalities are sufficiently
strong and if, in addition, ��min��Vn

�i� /Li
2�, the following

approximations are valid:

T0 � T1 �
1

q�
=

1

q
�c. �21�

A surprising observation about this result is that the mean
first passage times T0 , T1, and also the ratio W0 /W1
�T0 /T1�1, do not depend on the white noise intensity D,
i.e., there exists a finite interval of values of temperature
where both �left and right� potential wells are equally occu-
pied �cf. Fig. 3�c��.

Let us now consider the derivation of an approximate Eq.
�21� for the MFPT T0 �the derivation of T1 is analogous to
that�. For the regime �ii�, the particle locked in the noise state
n=1 at the right net potential minimum �see Fig. 1� will
move, at the initial time t=0, to the left net potential mini-
mum V1

�0��0�. As the inequalities presented above are suffi-
ciently strong, the particle can escape over the potential bar-
rier back to the right potential minimum only in the noise
state z3=−a. In this state the depth of the left net potential
well is small, and the corresponding Kramers time is much
shorter than the noise correlation time �=1 /�. In the case of

trichotomous fluctuations Z�t�, the probability W̄�t� that in a
certain time interval �0, t� transition to the noise state z3

=−a does not occur is given by W̄�t�=exp�−q�t� �5,24�. The
probability that the transition to z3=−a occurs within the
time interval �t , t+dt� is �q dt. Consequently, the MFPT
from the left potential well to the right one is approximately
given by T0�q��0

�te−q�tdt=1 / �q��. Thus, we have obtained
an earlier result, namely, Eq. �21�.

Regime (iii): K1
�0����K2

�0��K3
�0� , K3

�1��K2
�1����K1

�1�.
Now, the MFPT for the right potential well is the same as in
the case of the regime �ii�, T1�1 / �q��. The MFPT for the

0.001 0.01 0.1 1 10
D

0

0.2

0.4

0.6

0.8

1

W
0
,W

1

W0

W0

W1

W1

FIG. 5. Dependence of the probabilities W0 and W1 on the di-
mensionless temperature D �Eq. �14�� in the case of fast fluctua-
tions, �=40. Parameter values: a=2, 
=1, d=0.24, q=0.45. The
dotted line depicts the function W0�D� in the case of a nonfluctuat-
ing average potential V2�x�.
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left potential well can be expressed as T0�1 / ��1−q���. Us-
ing Eq. �16� one obtains the occupancy probabilities

W0 � q, W1 � 1 − q . �22�

Thus, in this regime the probabilities W0 and W1 do not
depend on the temperature D either. The only distinction
from the case of �ii� is the dependence on the noise kurtosis
�= �1 / �2q�−3�, which reflects the three-level structure of the
noise. A comparison with Fig. 3�c� shows that for the tem-
perature interval considered our approximation �22� captures
the exact results extremely well. The physical mechanism
appropriate to generate the result T0�1 / ��1−q��� is analo-
gous to those considered in the case of �ii�. The key factor is
that a particle in the left net potential well V1

�0� is not able,
before switching to the state n=2 or 3, to pass the potential
barrier by a thermally activated escape. Hence now the prob-

ability W̄�t�=exp�−�1−q��t� and the probability that the
transition z1=a→z2=0 or z1=a→z3=−a occurs within the
time interval �t , t+dt� is �1−q��dt. So the leading contribu-
tion to the MFPT T0 in this regime is T0��1
−q���0

�te−�1−q��tdt=1 / ��1−q���.
Regime (iv): ��K1

�0�. In this case, for increasing values of
D, the occupancy probability W0 first decreases to a mini-
mum and next grows to the value d �see Fig. 3�. Such a
behavior of W0 can be intuitively understood. The more we
increase the temperature, the more jumping events over the
barrier of the net potential V1 from left to right can take place
during the noise correlation time. As a result the MFPT for
the left potential well must decrease. As long as the tempera-
ture is such that K2

�1����K1
�0�, the MFPT for the right po-

tential well is approximately constant: T1�1 / �q��. Conse-
quently, the occupation of the left potential well must
decrease with the growth of D. As we enter the high-
temperature area, ��K3

�1�, the influence of temperature is
twofold. First, during the noise correlation time the particles
are able to pass all net potential barriers in both directions
and, second, the distributions of particles within the potential
wells tend to become more uniform, as the temperature
grows. For very high temperatures, D�V3

�1�, the Brownian
particles “fail to see” the structure of the potential profile and
move as in a simple rectangular potential well. Hence, the
probability W0 saturates at the value d as D increases. This
result is due to the uniform distribution of Brownian particles
as well as to the fact that the width of the left potential well
is d.

Finally, we will briefly consider the behavior of the prob-
ability W0 in the high-frequency regime, ��min��Vn

�i� /Li
2�.

A general feature of our solution is that with an increasing
switching rate � the resonancelike phenomenon, i.e., the lo-
cal maximum �see Figs. 3�a� and 3�b��, becomes less and less
sharp and disappears at ��max��Vn

�i� /Li
2�. For large values

of the switching rate �, two characteristic regions can be
discerned for the temperature D �see Fig. 5�: first, the region
of low intrawell diffusion levels D��min���Vn

�i� /Li�2�, for
which the characteristic distance of intrawell thermal diffu-
sion �D�c is much smaller than the typical deterministic dis-
tances of the driven particles during the noise correlation
time �c=1 /�, and, second, the regime D�

min���Vn
�i� /Li�2�, where thermal diffusion dominates. In

the regime of low diffusion the behavior of W0 is similar to
that considered by Eq. �20�, but the critical temperature Dcr,
at which W0=W1= 1

2 , decreases as � increases. Note that Dcr
becomes zero at the limit �→�. In this case, the response of
W0 to small variations of temperature is extremely pro-
nounced, leading to an infinite derivative dW0 /dD at D=0.
In the region of strong diffusion, the Brownian particle is
subject to the average potential V2�x� in the case of fast fluc-
tuations. Hence, in this regime the occupancy probability W0
depends on temperature in the same way as in the case of
the nonfluctuating potential V2�x�, i.e., with increasing tem-
perature W0 increases monotonically up to the value d �see
Fig. 5�.

IV. CONCLUSIONS

In the present work, we analyze the behavior of one-
dimensional overdamped Brownian motion in a sawtoothlike
asymmetric bistable potential driven by a trichotomous noise
and an additive thermal noise. Using the corresponding mas-
ter equation, we obtained an exact expression for the occu-
pancy probability of the metastable state, and demonstrated
the phenomenon of noise-induced stability. Our major result
is the effect of multiply enhanced stability of a metastable
state versus temperature. Notably, enhancement of the stabil-
ity also occurs at moderate temperatures, i.e., where the tem-
perature D is such that the lowest barrier height of the system
is just a few D, which is relevant for cell biology �31�. In the
case of dichotomous noise, which is a special case of tri-
chotomous noise, a qualitatively similar model has been
studied in �16�. However, neither the phenomenon of multi-
ply temperature-enhanced stability nor the existence of a cor-
responding resonancelike peak versus temperature at moder-
ate values of D has been recognized or discussed before in
the context of the stability analysis of such simple models
with a double-well potential. Furthermore, for certain system
parameters, the occupancy of the metastable potential well as
a function of the temperature has two relatively large pla-
teaus at moderate temperatures, i.e., in this system parameter
region thermal noise is effectively suppressed. This noise
suppression appears when the escape process strongly corre-
lates with potential fluctuations �see Eq. �21��.

Comparison of the exact results with the approximations
considered in Sec. III suggests that interesting phenomena,
such as noise-induced stability, resonancelike enhancement
of stability at moderate temperatures, and the existence of
finite temperature regions �plateaus� where the occupancy of
the metastable state is insensitive to temperature, are quite
robust to variation of the kurtosis and the noise correlation
time �over a broad range� as well as the potential profile.
Note that, in a more general case, if the potential is smooth,
in Eq. �15� for the Kramers rates Kn

�i� only a modification of
the prefactor is necessary, while the exponent, which mainly
determines the dependence of Kn

�i� on temperature, depends
on the depth of the potential well. The key factors for the
appearance of the above-mentioned effects are that most of
the depths �Vn

�i� of the net potential wells are sufficiently
distinct so as to lead to situations where the rates Kn

�i� allow
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consideration of well-defined separations of time scales, and
that the lowest barrier height for the metastable state �left
potential well, see Fig. 1�, �V3

�0�, slightly exceeds the lowest
barrier height for the right potential well, �V1

�1�. The major
advantage of the reported phenomena is that the control pa-
rameter is temperature, which can easily be varied in experi-
ments.

Our exact analytical results concerning the enhancement
of stability of a metastable state in a fluctuating bistable po-
tential can be a good starting point for investigations of more
realistic systems. Here, we briefly mention three possible di-
rections. First, it would be interesting to investigate the be-
havior of W0 on continuous transformation of the piecewise
linear potential into a smooth one. Second, in the dynamics
of soft-spin Ising magnets, the spin projections can be mod-
eled as different states of trichotomous or dichotomous
noise. We believe that the model discussed in this paper can
be expanded, along the lines described in �21�, to one that is
suitable for studying metastability in a two-dimensional Ising
model with dynamic impurities. Finally, our paper is re-
stricted to the case of a well-defined potential flipping rate
determined by the noise correlation time. However, in many
physical systems, fluctuations have power-law correlations �a
well-defined noise correlation time is absent�. Thus, it is im-
portant to investigate, by numerical simulations, the occur-
rence of the resonant phenomena described in this paper with
those strongly correlated fluctuations.
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APPENDIX: FORMULAS FOR THE MEAN FIRST
PASSAGE TIME

Using the standard methods described in �32�, from the
backward equation for the master equation �5�, the equation
for the MFPT can be deduced:

�hi − zn�
�

�x
Ti�x,zn� + D

�2

�x2Ti�x,zn� − �Ti�x,zn� + �Ti�x� = − 1,

�A1�

where i=0,1, n=1,2 ,3, and

Ti�x� = �
n=1

3

�n
�i�Ti�x,zn�

with the initial probabilities �n
�i� given by Eq. �17�. After

solving Eq. �A1� with the boundary conditions

Ti�d,zn� = �0,
d

dx
Ti�x,zn��x=Li

= 0,

where L0=0 and L1=1, a straightforward calculation gives
for the mean first passage times T0�T0�0� and T1�T1�1�

Ti = �i + �
j=1

5

Cij . �A2�

Here the constants �i and Cij are determined by a nonhomo-
geneous system of six linear algebraic equations:

�
j=1

5

Cij�ijAnij =
D

hi
,

�i + �
j=1

5

CijAnije
�ijli/D =

li

hi
−

zn

�hi
, �A3�

where l0=d , l1=−�1−d�, and the quantities Anij , �ij are the
same as in Eq. �7�. Hence, the problem is solved and the
evaluation of the MFPT can be handled by linear algebra.
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